Integrated Design and Control of Flexure-Based Nanopositioning Systems Part I: Methodology
نویسندگان
چکیده
Flexure-based mechanisms, also referred to as flexures, are widely being used as motion-guidance, or bearing, elements in applications requiring multi-degree-of-freedom positioning and alignment. Unlike friction-bearings (such as sliding or rolling contact bearings), flexures can be designed to offer, to a large extent, reliable linear elastic motion with a high resolution (on the order of nanometers) over small ranges of motion (on order of micrometers). Example applications include positioning a probe or sample in atomic force microscopy, alignment of tool and sample in stamping processes, and fine-positioning of wafers and masks in semiconductor manufacturing. These applications are often required satisfy critical functional requirements, such as load-capacity, bandwidth, resolution, and range. A systematic approach is needed to simultaneously address the design and control challenges involved, starting from the initial design concept generation stage to the final control implementation and testing. In this paper, we present an integrated design and control method for implementing flexurebased nanopositioning systems. We discuss the need for varying design topology and order of a controller in design and control optimization. An automation engine generates a set of flexurebased design topologies and also controllers of varying order in the optimization. A simple 1-DOF example is worked out to illustrate the steps involved in using this methodology. The outcome of the exercise is a novel design topology, with it shape and size optimized, and a controller synthesized such that a desired control bandwidth and design requirements of strength and modal separation are met.
منابع مشابه
Invited review article: high-speed flexure-guided nanopositioning: mechanical design and control issues.
Recent interest in high-speed scanning probe microscopy for high-throughput applications including video-rate atomic force microscopy and probe-based nanofabrication has sparked attention on the development of high-bandwidth flexure-guided nanopositioning systems (nanopositioners). Such nanopositioners are designed to move samples with sub-nanometer resolution with positioning bandwidth in the ...
متن کاملDesign of a Large Range Xy Nanopositioning System
Achieving large motion range (> 1mm) along with nanometric motion quality (< 10nm), simultaneously, has been a key challenge in nanopositioning systems. Practical limitations associated with the individual physical components (bearing, actuators, and sensors) and their integration, particularly in the case of multi-axis systems, have restricted the range of currently available nanopositioning s...
متن کاملA Moving Magnet Actuator for Large Range Nanopositioning
In this paper, we present the design, fabrication, and testing of a moving magnet actuator (MMA) for large range (∼10mm) nanopositioning. MMAs are direct-drive, single-phase electromagnetic linear actuators that provide frictionless and backlashfree motion. These qualities, along with an adequate motion range, make MMAs promising candidates for large range nanopositioning. In this work, we iden...
متن کاملA Modified Positive Velocity and Position Feedback scheme with delay compensation for improved nanopositioning performance
This paper presents a controller design to compensate the effects of time delay in a flexure-based piezoelectric stack driven nanopositioner. The effects of the time delay in flexure nanopositioners is illustrated and identified by means of experimentally obtaining the frequency response of the system. Moreover, a theoretical model which takes into account the dependence between the sampling ti...
متن کاملTip size effects on atomic force microscopy nanoindentation of a gold single crystal
Related Articles Switching spectroscopic measurement of surface potentials on ferroelectric surfaces via an open-loop Kelvin probe force microscopy method Appl. Phys. Lett. 101, 242906 (2012) Enhanced quality factors and force sensitivity by attaching magnetic beads to cantilevers for atomic force microscopy in liquid J. Appl. Phys. 112, 114324 (2012) Invited Review Article: High-speed flexure-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011